Dougherty Valley HS Chemistry - AP Acid Base – pH Calculations

Name:

Period:

Seat#:

Worksheet #1

Directions: Show all work. Box final answers.

1)	Strong Acid Solution – assume full dissociation Calculate the pH of 0.00125 M HNO ₃ <u>2.903</u> >> Determine [H ⁺] and then the pH.	2)	Strong Base Solution – assume full dissociation Calculate the pH of 0.00125 M KOH <u>11.097</u> >> Determine [OH-], calculate pOH, and then calculate the pH.
3)	Weak Acid Solution – does not fully dissociate Calculate the pH of 0.00125 M HOCI <u>5.18</u> K _a = 3.5 x 10 ⁻⁸ >> Determine [H ⁺] using an ICE table, then calculate the pH.	4)	Weak Base Solution – does not fully dissociate Calculate the pH of 0.00125 M NH ₃ <u>10.15</u> K _b = 1.8 x 10 ⁻⁵ >> Determine [OH] using an ICE table, calculate the pOH, then calculate the pH.

5)	Salt of a Weak Acid – have to consider hydrolysis Calculate the pH of 0.00125 M NaOCI <u>9.28</u> K _{a HOCI} = 3.5 x 10 ⁻⁸ >> Write hydrolysis, calculate Kb, determine [OH] using an ICE table, calculate the pOH, then calculate the pH.	6)	Salt of a Weak Base – have to consider hydrolysis Calculate the pH of 0.00125 M NH4Cl <u>6.08</u> K _{b NH3} = 1.8 x 10 ⁻⁵ >> Write hydrolysis, calculate Ka, determine [H ⁺] using an ICE table, then calculate the pH.
()	Diprotic Acid Solution – 1 st is strong, 2 nd is weak Calculate the pH of 0.00125 M H ₂ CO ₃ <u>4.64</u> K _{a1} = 4.2 x 10 ⁻⁷ K _{a2} = 4.8 x 10 ⁻¹¹ >> Assume the only impactful amount of [H ⁺] dissociated came from the 1 st ionization, determine [H ⁺] using an ICE table, then calculate pH.	8)	 Mixture of Acid and Base – neutralize then see excess Calculate the pH of 20.0 mL of 0.00125 M HNO3 added to 30.0 mL of 0.00125 M KOH <u>10.398</u> > Determine the moles of excess H+ or OH- taking into account the balanced chemical equation, determine the total volume of the mixture, calculate the [H+] or [OH-] based on the excess that was left after neutralization, then calculate the final pH.